Health Economics

Ondřej Schneider

Charles University, Prague

March 17, 2020, Public Finance

Government Provision

Insurance 00000000

Course schedule

▶ Syllabus

Week	Date	Торіс	Chapters	Lecturer
1	Feb 18	Economic rationale for the government	1, 2, 3, 4, 5	Miroslav Palanský
2	Feb 25	Public budgets	10, 26, 27	Natalia Li
3	Mar 3	Inequality		Marek Šedivý
4	Mar 10	Old-age pensions		Ondřej Schneider
5	Mar 17	Health economics	12	Ondřej Schneider
6	Mar 24	Public choice theory	7, 8	Miroslav Palanský
7	Mar 31	Cost-benefit analysis	6, 10, 11	Petr Janský
8	Apr 7	Taxation, tax incidence	17, 18	Miroslav Palanský
9	Apr 14	Tax evasion	23, 24	Petr Janský
10	Apr 21	Corporate taxation	21, 25	Petr Janský
11	Apr 28	Optimal taxation, personal income taxation	19, 20, 22	Miroslav Palanský
12	May 5	Externalities	9	Miroslav Palanský
13	May 12	Public procurement		Miroslav Palanský

Demand for Health 00

Health Care Provision 0000

Government Provision

Insurance 00000000

Today's lecture

Introduction

Demand for Health

Health Care Provision

Government Provision

Insurance

Insurance 00000000

Health Care and Health Insurance

Health H is a consumption good and an investment good at the same time!

You want H, but you also need H to be able to do other things. We all need $H > H_{MIN}$ If $H < H_{MIN}$, you are in trouble: no income, no fun.

Health insurance is only one way to achieve Health, there are others (cash, taxes).

How much health do we demand?

Grossman model:

Government Provision

Insurance 00000000

Demand for Health: Grossman Model

Grossman Model

Marginal Efficiency of Investment (MEI) is downward sloping and convex - it has diminishing returns to investment You choose H1 that reflects cost of investment. Cost of $H = r + \delta$ where r is opportunity cost of your investment (typically of money) and is the rate of depreciation of your health.

Government Provision

Insurance 00000000

Demand for Health: Grossman Model

So far, very simple. What if r = 0? Optimal stock of H will rise (free health care) What if δ goes up (older people do have higher δ)? Optimal stock of H will fall (it still may take more health care to get there). What if people get more educated/smarter? Their MEI will shift to right (more efficient) optimal stock of H will rise. So, Grossman model predicts that optimal H will rise if health care is cheaper (free), and if people are more educated.

Government Provision

Insurance 00000000

Health Care provision

How do we get health care in order to maintain our Health H?
 Market provision vs. Government provision

2) How do we pay for health care?

Cash - Insurance - Taxes

Government Provision

Insurance 00000000

Market Health Care provision

Can markets provide health care?

Sure, why not.

Health care is NOT public good. (Clear? Non-rivalry and non-excludability...)

Can market provide health care efficiently?

That's another matter.

Market Health Care provision

Market failures:

- 1. Imperfect information: what am I buying?
- 2. Limited competition: who sells?
- 3. Adverse selection: young do not need it (pre-existing conditions...)
- 4. Moral hazard: if free, overconsumption; if I get it, I am less responsible.
- 5. Principal agent problem: patient-doctor-insurance company-government

Introduction 0 Demand for Health 00 Health Care Provision

Government Provision

Insurance 00000000

Moral Hazard

Moral Hazard Costs of Health Insurance for Patients

No insurance: cost is \$100, quantity of health care is Q1 Insurance and 10% copayment: cost is \$10, quantity rises to Q2 There is deadweight loss of "unnecessary health care."

Public Finance and Public Policy Jonathan Gruber Fourth Edition Copyright © 2012 Worth Publishers

Government Provision

Insurance 00000000

Government Provision

4 main players:

- Clients all people, not only patients
- Health care providers doctors, hospitals
- Health insurance companies / funds / agencies –

State

Different types of health sectors in Europe National health service (UK, Spain) - primarily state-organized and also state-run system, though private providers grow in importance in recent years

```
Social health insurance
Only 1 insurer (Poland, Hungary,..)
More insurers (ČR, Slovakia, Germany,...)
```

Government Provision

Insurance 00000000

Government Provision

In many rich countries governments step in and either pay or mandate others to pay for health care. OECD data: notice US before and after ACA

Introduction

Health Care Provision

Government Provision

Insurance 00000000

but it's not cheap...

Government Provision

Insurance 00000000

Expenditures rising fast

In real terms, heatlh care expenditures are rising...

Government Provision

Insurance 00000000

Expenditures rising fast

... and will keep rising fast (remember Grossman model!) Notice that health care diff is positive in all countries, unlike pensions, education or long term care.

Introduction 0 Demand for Health 00 Health Care Provision

Government Provision

Insurance 00000000

Efficiency?

Correlation (expenditures, life expectancy) is 0.46... Correlation (alcohol consumption, life expectancy) is -0.008 ... No idea what it means...

Introduction 0 Demand for Health 00 Health Care Provision

Government Provision

Insurance 00000000

Efficiency?

The "Flat of the Curve"

Government Provision

Insurance 00000000

Health Care Insurance: Consumers Insurance = consumption smoothing

Government Provision

Insurance •0000000

Health Care Insurance: Consumers

2 states: healthy and sick.

Individual doesn't know whether she will be sick or healthy But she has a subjective probability of each event She has an expected value of her utility in the coming year

Define: $P_0 = \text{prob.}$ of being healthy $P_1 = \text{prob.}$ of being sick $P_0 + P_1 = 1$ When "Healthy": Income \$40,000, utility 100 When "Sick": Income \$20,000, utility 80

Government Provision

Insurance 0000000

Health Care Insurance: Consumers

With no insurance, the individual's expected utility for next year is: $E(U) = P_0 * U($40,000) + P_1 *$ $U(\$20,000) = P_0 * 100 + P_1 * 80$ If $P_1 = 0.20$ E(U) = 0.80 * 100 + 0.20 * 80 = 96E(Y) = 0.80 * \$40,000 + 0.20 *20,000 = 36,000Without insurance, the consumer has an expected loss of \$4,000.

Government Provision

Insurance 0000000

Health Care Insurance: Consumers

Government Provision

Insurance 00000000

Health Care Insurance: Consumers

However, to get to the utility level 92, the individual would be willing to pay \$5,000Paying \$5,000 to insurer leaves consumer with 92 utils, which equals E(U) without insurance The difference (\$1,000) is the insurance company profit

Government Provision

Insurance 00000000

Demand for Insurance

- More insurance if price is lower. Competition will be between the price \$4,000 (true cost of insurance) and \$5,000 (maximum consumer is willing to pay to stay at the same utility as without insurance). [But competition is never perfect, as we already saw.]
- More insurance with rising risk aversion increases the demand for health insurance. Zero risk aversion = zero insurance.
- More insurance with higher probablity of illness (adverse selection!)

Government Provision

Insurance 00000000

Insurance: Provider

Payment for physician services is $P = \alpha + \beta * c$

- $\alpha = {\rm fixed} \ {\rm cost} \ {\rm payment} \ {\rm for} \ {\rm a} \ {\rm given} \ {\rm diagnosis}$
- β = payment for proportional costs c (tests, nurses)
- Various methods of payment
- 1) Fee-for-service

$$\alpha = \mathbf{0} \ \beta > \mathbf{1}$$

No fixed payment for practice, but insurance company pays full cost of all visits to doctor plus a surcharge.

Leads to excessive care.

Government Provision

Insurance 0000000

Insurance: Provider

2) $\alpha > 0 \beta = 1$

Payments for number and type of patients but not for services rendered.

Difficult to monitor, may lead to insufficient care.

Trend is towards $\alpha > 0$ $\beta = 1$: Diagnosis Related Groups (DRG) - patients sorted into groups, providerrs paid per diagnosis.

Government Provision

Insurance 0000000

Conclusions

General accessibility to health care generally reached in Europe

- Health care part of service sector
- Health care a very sensitive political thing...

Pressure on healthcare finances mainly through:

- New medical technologies
- Population ageing
- Changing attitude of people towards own health and towards the way they consume the health care